Data Analysis and Mining
The research field of data analysis and mining has attracted the interest of both academia and industry in recent years. This reprint contains 17 papers, which cover different topics of the broad research field of data analysis and mining. Each paper presents new data mining algorithms and technique...
Format: | eBook |
---|---|
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2023
|
Subjects: | |
Online Access: | Open Access: DOAB: description of the publication Open Access: DOAB, download the publication |
LEADER | 05212namaa2201549uu 4500 | ||
---|---|---|---|
001 | doab132388 | ||
003 | oapen | ||
005 | 20240108 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 240108s2023 xx |||||o ||| 0|eng d | ||
020 | |a 9783036595023 | ||
020 | |a 9783036595030 | ||
020 | |a books978-3-0365-9502-3 | ||
024 | 7 | |a 10.3390/books978-3-0365-9502-3 |2 doi | |
040 | |a oapen |c oapen | ||
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a KNTX |2 bicssc | |
720 | 1 | |a Ougiaroglou, Stefanos |4 edt | |
720 | 1 | |a Margaris, Dionisis |4 edt | |
720 | 1 | |a Margaris, Dionisis |4 oth | |
720 | 1 | |a Ougiaroglou, Stefanos |4 oth | |
245 | 0 | 0 | |a Data Analysis and Mining |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2023 | ||
300 | |a 1 online resource (342 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |f Unrestricted online access |2 star | |
520 | |a The research field of data analysis and mining has attracted the interest of both academia and industry in recent years. This reprint contains 17 papers, which cover different topics of the broad research field of data analysis and mining. Each paper presents new data mining algorithms and techniques, as well as applications of data analysis and mining in real-world domains. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |u https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Information technology industries |2 bicssc | |
653 | |a ANOVA | ||
653 | |a artificial intelligence | ||
653 | |a artificial neural networks | ||
653 | |a attention | ||
653 | |a belief propagation | ||
653 | |a chi-square test | ||
653 | |a class imbalance | ||
653 | |a classification | ||
653 | |a clickstream analysis | ||
653 | |a closed sequential patterns | ||
653 | |a clustering | ||
653 | |a commodity video | ||
653 | |a constrained likelihood ratio test | ||
653 | |a constraint satisfaction | ||
653 | |a data and web mining | ||
653 | |a data mining | ||
653 | |a data partitioning | ||
653 | |a data science | ||
653 | |a deep learning | ||
653 | |a deep neural network | ||
653 | |a deep spatiotemporal information | ||
653 | |a down-sampling convolution | ||
653 | |a DSM-V | ||
653 | |a e-commerce | ||
653 | |a educational data mining | ||
653 | |a elective cesarean section | ||
653 | |a electromagnetic field | ||
653 | |a emergency cesarean section | ||
653 | |a feature subset selection | ||
653 | |a Fisher test | ||
653 | |a forecasting | ||
653 | |a frequent subtree | ||
653 | |a gamma distribution | ||
653 | |a graph data model | ||
653 | |a graph embedding | ||
653 | |a graph neural network | ||
653 | |a graph techniques | ||
653 | |a graph-based recommendations | ||
653 | |a item co-occurrence | ||
653 | |a key interested frame | ||
653 | |a load balancing | ||
653 | |a LSTM-RNN | ||
653 | |a machine learning | ||
653 | |a message passing | ||
653 | |a metaheuristics | ||
653 | |a meteorological data mining and machine learning | ||
653 | |a mobile technology | ||
653 | |a mobility patterns | ||
653 | |a model interpretability | ||
653 | |a multivariate time series | ||
653 | |a next-item and next-basket recommendations | ||
653 | |a non redundant sequential rules | ||
653 | |a non-ionizing radiation protection | ||
653 | |a online social network | ||
653 | |a parallel algorithms | ||
653 | |a passage-level event connection graph | ||
653 | |a postpartum period | ||
653 | |a posttraumatic stress disorder | ||
653 | |a preprocessing | ||
653 | |a probabilistic graphical model | ||
653 | |a PSF | ||
653 | |a purchase intent | ||
653 | |a Python | ||
653 | |a random decision forests | ||
653 | |a randomized undersampling | ||
653 | |a recommender systems | ||
653 | |a SAR | ||
653 | |a selection | ||
653 | |a semantic similarity | ||
653 | |a sequence mining | ||
653 | |a sequential rule mining | ||
653 | |a sequitur | ||
653 | |a session-based recommendations | ||
653 | |a signal processing | ||
653 | |a smart device | ||
653 | |a SMOTE oversampling | ||
653 | |a social media data | ||
653 | |a social network analysis | ||
653 | |a social network security | ||
653 | |a spam detection | ||
653 | |a statistics | ||
653 | |a text similarity calculation | ||
653 | |a time series | ||
653 | |a top-k non redundant rules | ||
653 | |a tourist clusters | ||
653 | |a tourist flows | ||
653 | |a TRuleGrowth | ||
653 | |a trust inference | ||
653 | |a trust propagation | ||
653 | |a undersampling using temporal distances | ||
653 | |a uniformly most powerful test | ||
653 | |a univariate | ||
653 | |a vector tuning | ||
653 | |a web analytics | ||
653 | |a web log mining | ||
793 | 0 | |a DOAB Library. | |
856 | 4 | 0 | |u https://directory.doabooks.org/handle/20.500.12854/132388 |7 0 |z Open Access: DOAB: description of the publication |
856 | 4 | 0 | |u https://mdpi.com/books/pdfview/book/8412 |7 0 |z Open Access: DOAB, download the publication |