New Insights in Machine Learning and Deep Neural Networks

In this Special Issue we gathered ten exemplary papers, each delineating advancements within the spheres of machine learning and deep neural networks. Commencing with a thorough exploration by Figueira and Vaz, readers are introduced to the nuances of synthetic data generation and evaluation, follow...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03542namaa2200553uu 4500
001 doab128845
003 oapen
005 20231130
006 m o d
007 cr|mn|---annan
008 231130s2023 xx |||||o ||| 0|eng d
020 |a 9783036589824 
020 |a 9783036589831 
020 |a books978-3-0365-8983-1 
024 7 |a 10.3390/books978-3-0365-8983-1  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
720 1 |a Figueira, Álvaro  |4 edt 
720 1 |a Figueira, Álvaro  |4 oth 
720 1 |a Renna, Francesco  |4 edt 
720 1 |a Renna, Francesco  |4 oth 
245 0 0 |a New Insights in Machine Learning and Deep Neural Networks 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (258 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a In this Special Issue we gathered ten exemplary papers, each delineating advancements within the spheres of machine learning and deep neural networks. Commencing with a thorough exploration by Figueira and Vaz, readers are introduced to the nuances of synthetic data generation and evaluation, followed closely by Silva and Pedroso's systematic approach to leveraging deep reinforcement learning within the intricate realm of delivery logistics. Kamran et al. contribute an astute methodology for camouflage object segmentation, whereas Pinheiro and collaborators offer a crafted semi-supervised strategy for predicting EGFR mutations via CT images. Subsequent contributions, such as Lee and Yoo's framework for portrait emotion recognition and Balakrishnan et al.'s analytical exploration of transformer models for Twitter disaster detection, further exemplify the depth of research contained herein. Later chapters cover a broad spectrum of themes: Li, Branco, and Zhang investigate house price prediction; Aziz and his team delve into the geo-spatial analysis of hate speech; Nazari, Branco, and Jourdan introduce innovations in GAN training methodologies; and Xie and Lin present CNN models meticulously tailored for ectopic beat classification. In its entirety, this Special Issue represents progressive strides in machine learning and deep neural networks made by distinguished scholars. It offers readers an insightful overview of both the current state-of-the-art methodologies and the burgeoning innovations within this exciting field. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
650 7 |a Information technology industries  |2 bicssc 
653 |a automatic feature selection 
653 |a data augmentation 
653 |a detecting fake news on social media 
653 |a facial expression recognition 
653 |a generative adversarial networks 
653 |a image and video reconstruction 
653 |a medical imaging 
653 |a object identification and scene classification 
653 |a prediction analysis 
653 |a text and narrative representation 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/128845  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/8315  |7 0  |z Open Access: DOAB, download the publication