LEADER 04334namaa2200913uu 4500
001 doab128726
003 oapen
005 20231130
006 m o d
007 cr|mn|---annan
008 231130s2023 xx |||||o ||| 0|eng d
020 |a 9783036593128 
020 |a 9783036593135 
020 |a books978-3-0365-9312-8 
024 7 |a 10.3390/books978-3-0365-9312-8  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PN  |2 bicssc 
072 7 |a PNK  |2 bicssc 
720 1 |a Cui, Xiaobing  |4 edt 
720 1 |a Cui, Xiaobing  |4 oth 
245 0 0 |a Research on Polyoxometalate Materials 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (174 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Polyoxometalates (POMs) are a large and rapidly growing class of early-transition-metal oxide clusters. POMs are formed via acid-involved condensation reactions from monomeric oxometalate units, thus holding a special position (intermediate state) between monomeric oxometalate units and infinite metal oxide frameworks. POMs continue to show remarkable advances and unexpected surprises in both their fundamentals and applications. The chemical compositions (addenda atoms) of POMs are mainly Mo, W, V, Nb, and Ta, and the heteroatoms of POMs are more variable, including P, As, B, Al, Si, Ge, S, and so on. The wide range of chemical composition variability and the large amount of unusual structural types enable POMs to exhibit a large number of different properties, such as rich solution equilibria, significant chemical and thermal stability, strong acidity, and the ability to act as proton-electron sinks due to their fast and reversible proton-coupled redox processes. Based on their intrinsic multifunctional nature, POMs have significant applications in catalysis, medicine, and materials science, etc. POMs not only can be used widely in different disciplines but can also be combined with polymers, oxides, ionic liquids, or carbonaceous supports to construct new and advanced composite (hybrid) materials, which have important, extensive applications in catalysis, electrode materials, electrocatalysis, photocatalysis, and so on. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Chemistry  |2 bicssc 
650 7 |a Inorganic chemistry  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a Anderson structure 
653 |a Anderson-Evans 
653 |a azobenzene 
653 |a benzyl alcohol oxidation 
653 |a bifunctional electrochromic energy storage 
653 |a cation-modulation 
653 |a chromatography 
653 |a cluster-organic frameworks 
653 |a composite film 
653 |a covalent modification 
653 |a decaborate 
653 |a DFT 
653 |a electrocatalysis 
653 |a green chemistry 
653 |a helical chain 
653 |a hybrid 
653 |a hydrogen evolution reaction 
653 |a hydrothermal syntheses 
653 |a ion-mobility mass spectrometry 
653 |a molecular catalysis 
653 |a n/a 
653 |a nickel complexes 
653 |a NMR 
653 |a octamolybdate 
653 |a organic synthesis 
653 |a photo-responsive 
653 |a polyoxometalate 
653 |a polyoxometalates 
653 |a proton transfer 
653 |a secondary transition metal substituted Ge-V-O clusters 
653 |a shape characterization 
653 |a structural analysis 
653 |a TiO2 nanowire 
653 |a titanium 
653 |a transition metal substitution 
653 |a triol ligand 
653 |a vanadium-containing polyoxoniobates 
653 |a vanadogermanate 
653 |a vanadomolybdate 
653 |a zirconium 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/128726  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/8190  |7 0  |z Open Access: DOAB, download the publication