Spectral Geometry of Graphs

This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Nature 2024
Series:Operator Theory: Advances and Applications
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03566namaa2200517uu 4500
001 doab121388
003 oapen
005 20231116
006 m o d
007 cr|mn|---annan
008 231116s2024 xx |||||o ||| 0|eng d
020 |a 978-3-662-67872-5 
020 |a 9783662678701 
020 |a 9783662678725 
024 7 |a 10.1007/978-3-662-67872-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GPFC  |2 bicssc 
072 7 |a PBKJ  |2 bicssc 
072 7 |a PBKQ  |2 bicssc 
072 7 |a UYA  |2 bicssc 
720 1 |a Kurasov, Pavel  |4 aut 
245 0 0 |a Spectral Geometry of Graphs 
260 |a Berlin, Heidelberg  |b Springer Nature  |c 2024 
300 |a 1 online resource (639 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Operator Theory: Advances and Applications 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to the celebrated Selberg and Chazarain-Duistermaat-Guillemin-Melrose trace formulas. Unexpectedly this formula allows one to construct non-trivial crystalline measures and Fourier quasicrystals solving one of the long-standing problems in Fourier analysis. The remarkable story of this mathematical odyssey is presented in the first part of the book. To solve the inverse problem for Schrödinger operators on metric graphs the magnetic boundary control method is introduced. Spectral data depending on the magnetic flux allow one to solve the inverse problem in full generality, this means to reconstruct not only the potential on a given graph, but also the underlying graph itself and the vertex conditions. The book provides an excellent example of recent studies where the interplay between different fields like operator theory, algebraic geometry and number theory, leads to unexpected and sound mathematical results. The book is thought as a graduate course book where every chapter is suitable for a separate lecture and includes problems for home studies. Numerous illuminating examples make it easier to understand new concepts and develop the necessary intuition for further studies. ; Self-contained introduction to the theory of quantum graphs First time treatment of inverse problems in detail Numerous examples from physics included Open questions at the end of several chapters 
540 |a Creative Commons  |f by/4.0/  |2 cc  |u http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Calculus of variations  |2 bicssc 
650 7 |a Cybernetics and systems theory  |2 bicssc 
650 7 |a Differential calculus and equations  |2 bicssc 
650 7 |a Mathematical theory of computation  |2 bicssc 
653 |a Inverse Problems 
653 |a Quantum Graphs 
653 |a Self-Adjoint Operators 
653 |a Systems Theory 
653 |a Vertex Scattering Matrix 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/121388  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/85092/1/978-3-662-67872-5.pdf  |7 0  |z Open Access: DOAB, download the publication