Artificial Intelligence in Medical Image Processing and Segmentation

This reprint showcases a selection of bleeding-edge articles about medical image processing and segmentation workflows based on artificial intelligence algorithms. The proposed papers are applied to multiple and different anatomical districts and clinical scenarios.

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
ALO
CAD
CNN
CT
GAN
MRI
OCT
PA
PCA
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05552namaa2201777uu 4500
001 doab113993
003 oapen
005 20230911
006 m o d
007 cr|mn|---annan
008 230911s2023 xx |||||o ||| 0|eng d
020 |a 9783036585864 
020 |a 9783036585871 
020 |a books978-3-0365-8586-4 
024 7 |a 10.3390/books978-3-0365-8586-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Zaffino, Paolo  |4 edt 
720 1 |a Spadea, Maria Francesca  |4 edt 
720 1 |a Spadea, Maria Francesca  |4 oth 
720 1 |a Zaffino, Paolo  |4 oth 
245 0 0 |a Artificial Intelligence in Medical Image Processing and Segmentation 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (348 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This reprint showcases a selection of bleeding-edge articles about medical image processing and segmentation workflows based on artificial intelligence algorithms. The proposed papers are applied to multiple and different anatomical districts and clinical scenarios. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a 2D ultrasound image 
653 |a 2D/3D registration 
653 |a 3D virtual reconstruction 
653 |a ALO 
653 |a artificial hummingbird algorithm 
653 |a artificial intelligence 
653 |a artificial neural network (ANN) 
653 |a attention mechanism 
653 |a auto-segmentation 
653 |a automatic volume measurement 
653 |a breast cancer 
653 |a breast density 
653 |a CAD 
653 |a canonical correlation analysis (CCA) 
653 |a carbon ion radiotherapy 
653 |a CBCT 
653 |a cervical cancer 
653 |a cervical net 
653 |a children 
653 |a CNN 
653 |a comparison 
653 |a computer vision applications 
653 |a convolutional neural network 
653 |a Convolutional Neural Networks 
653 |a Cranio-Maxillofacial surgery 
653 |a CT 
653 |a DarkNet-19 
653 |a deep learning 
653 |a deep learning structures 
653 |a DICOM 
653 |a directional total variation 
653 |a disease discrimination accuracy 
653 |a dual-energy CT 
653 |a edge computing 
653 |a ensemble learning 
653 |a feature fusion 
653 |a feature selection 
653 |a fundus image 
653 |a GAN 
653 |a Grad-CAM 
653 |a hematoxylin eosin 
653 |a histopathological 
653 |a histopathology 
653 |a histopathology images 
653 |a image enhancement 
653 |a image inpainting 
653 |a image normalization 
653 |a image preprocessing 
653 |a image registration 
653 |a image segmentation 
653 |a image-guided radiotherapy 
653 |a in-house 
653 |a instance segmentation 
653 |a k-nearest neighbour (KNN) 
653 |a lesion segmentation 
653 |a limited-angular range 
653 |a loss function 
653 |a magnetic resonance imaging 
653 |a mandible 
653 |a mask-transformer-based networks 
653 |a medical image analysis 
653 |a medical imaging 
653 |a mitotic nuclei classification 
653 |a MobileNet 
653 |a mp-MRI 
653 |a MRI 
653 |a MRI guidance 
653 |a MRI-only 
653 |a multi-contrast MRI 
653 |a NasNet 
653 |a neuroimaging 
653 |a nuclei detection 
653 |a nuclei segmentation 
653 |a OCT 
653 |a orthogonal X-ray 
653 |a osteoarthritis 
653 |a ovarian tumor 
653 |a PA 
653 |a panoptic segmentation 
653 |a panoramic radiographs 
653 |a pap smear 
653 |a particle therapy 
653 |a patch size 
653 |a PCA 
653 |a PCNSL 
653 |a performance comparisons 
653 |a prostate cancer 
653 |a prostate segmentation 
653 |a pyramidal network 
653 |a radiomics 
653 |a random forest (RF) 
653 |a rare neurodevelopmental disorder 
653 |a rare tumor 
653 |a ResNet-101 
653 |a safranin O fast green 
653 |a scale-adaptive 
653 |a segmentation 
653 |a semantic segmentation 
653 |a shuffle net 
653 |a ShuffleNet 
653 |a software 
653 |a support vector machine 
653 |a support vector machine (SVM) 
653 |a synthetic CT 
653 |a teeth segmentation 
653 |a textural 
653 |a tooth disease recognition 
653 |a tuberous sclerosis complex 
653 |a two-step method 
653 |a U-Net 
653 |a ultrasound bladder scanner 
653 |a urinary disease 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/113993  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7837  |7 0  |z Open Access: DOAB, download the publication