Advances in Machine Learning and Mathematical Modeling for Optimization Problems

Machine learning and deep learning have made tremendous progress over the last decade and have become the de facto standard across a wide range of image, video, text, and sound processing domains, from object recognition to image generation. Recently, deep learning and deep reinforcement learning ha...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 03638namaa2200601uu 4500
001 doab113956
003 oapen
005 20230911
006 m o d
007 cr|mn|---annan
008 230911s2023 xx |||||o ||| 0|eng d
020 |a 9783036577401 
020 |a 9783036577418 
020 |a books978-3-0365-7741-8 
024 7 |a 10.3390/books978-3-0365-7741-8  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
720 1 |a Rivest, Francois  |4 edt 
720 1 |a Chehri, Abdellah  |4 edt 
720 1 |a Chehri, Abdellah  |4 oth 
720 1 |a Rivest, Francois  |4 oth 
245 0 0 |a Advances in Machine Learning and Mathematical Modeling for Optimization Problems 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (280 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Machine learning and deep learning have made tremendous progress over the last decade and have become the de facto standard across a wide range of image, video, text, and sound processing domains, from object recognition to image generation. Recently, deep learning and deep reinforcement learning have begun to develop end-to-end training to solve more complex operation research and combinatorial optimization problems, such as covering problems, vehicle routing problems, traveling salesman problems, scheduling problems, and other complex problems requiring general simulations. These methods also sometimes include classic search and optimization algorithms for machine learning, such as Monte Carlo Tree Search in AlphaGO. The present reprint contains all of the articles accepted and published in the Special Issue of Mathematics entitled "Advances in Machine Learning and Mathematical Modeling for Optimization Problems". The articles presented in this Special Issue provide insights into related fields, including models, performance evaluation and improvements, and application developments. We hope that readers will benefit from the insights of these papers and contribute to these rapidly growing areas. We also hope that this Special Issue will shed light on major developments in the area of machine learning and mathematical modeling for optimization problems and that it will attract the attention of the scientific community to pursue further investigations, leading to the rapid implementation of these techniques. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Mathematics & science  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a artificial neural networks (ANNs) 
653 |a convex minimization problems 
653 |a decision theory 
653 |a deep reinforcement learning 
653 |a end-to-end learning 
653 |a evolutionary computation 
653 |a feature selection 
653 |a machine learning 
653 |a optimization problems 
653 |a pickup and delivery 
653 |a resource allocation 
653 |a statistical learning 
653 |a traveling salesman problem 
653 |a vehicle routing problem 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/113956  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7800  |7 0  |z Open Access: DOAB, download the publication