Intelligent Soft Sensors

This Special Issue deals with the field of intelligent soft sensors that enable the online estimation of nonmeasurable process variables. Soft sensors or virtual sensors are common names for software algorithms in which multiple measurements are processed together. Typically, soft sensors are based...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
EDA
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04807namaa2201093uu 4500
001 doab113921
003 oapen
005 20230911
006 m o d
007 cr|mn|---annan
008 230911s2023 xx |||||o ||| 0|eng d
020 |a 9783036585222 
020 |a 9783036585239 
020 |a books978-3-0365-8523-9 
024 7 |a 10.3390/books978-3-0365-8523-9  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
720 1 |a Tomažič, Simon  |4 edt 
720 1 |a Tomažič, Simon  |4 oth 
245 0 0 |a Intelligent Soft Sensors 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (230 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This Special Issue deals with the field of intelligent soft sensors that enable the online estimation of nonmeasurable process variables. Soft sensors or virtual sensors are common names for software algorithms in which multiple measurements are processed together. Typically, soft sensors are based on control theory and are also referred to as state observers. There may be dozens or even hundreds of measurements from hard sensors (big data). The interaction of signals can be used to compute new quantities that cannot be measured directly online or are difficult and expensive to measure. Soft sensors are particularly useful in data fusion, combining measurements of different characteristics and dynamics. They can be used for fault diagnosis (self-analysis, self-calibration, and self-maintenance) as well as for control applications. Well-known software algorithms that can be seen as soft sensors include, for example, Kalman filters. More recent implementations of soft sensors use neural networks, fuzzy logic, models based on evolving clustering, partial least squares, etc. In the digitized factories of the future, intelligent sensors represent one of the core building blocks for automating and optimizing production, as they make production more efficient in every respect. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering and technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a affective computing 
653 |a bioprocess monitoring 
653 |a BIS index 
653 |a computerized adaptive testing (CAT) 
653 |a D-S evidence theory 
653 |a depth of hypnosis 
653 |a early fire warning 
653 |a EDA 
653 |a electrical resistance 
653 |a executive functions 
653 |a extended Kalman filter 
653 |a extreme learning machine 
653 |a frequency analysis 
653 |a general anesthesia 
653 |a hybrid feature fusion 
653 |a image feature extraction 
653 |a improved mathematical model 
653 |a improved particle swarm algorithm 
653 |a intelligent building system 
653 |a joule heating effect 
653 |a keyframe extraction 
653 |a kinetic model 
653 |a least squares support vector machine 
653 |a modelling 
653 |a multi-source data fusion 
653 |a n/a 
653 |a neurodevelopmental disorders 
653 |a non-linear models 
653 |a nonlinear regression model 
653 |a nonlinear systems 
653 |a observability 
653 |a outliers 
653 |a physiological signals 
653 |a Pichia pastoris 
653 |a population-data-based model 
653 |a prognostic and health management 
653 |a propofol 
653 |a Raman 
653 |a residual model 
653 |a robust observer 
653 |a self-sensing actuation 
653 |a sensor selection 
653 |a shape memory coil 
653 |a simulator 
653 |a sintering quality prediction 
653 |a soft sensor 
653 |a soft sensors 
653 |a soft-sensor based diagnosis 
653 |a spectroscopy 
653 |a state estimation 
653 |a stress detection 
653 |a support vector machine regression model 
653 |a target-controlled infusion 
653 |a total intravenous anesthesia 
653 |a transfer learning 
653 |a variable selection 
653 |a variable stiffness actuation 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/113921  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7764  |7 0  |z Open Access: DOAB, download the publication