LEADER 04409namaa2200997uu 4500
001 doab112526
003 oapen
005 20230808
006 m o d
007 cr|mn|---annan
008 230808s2023 xx |||||o ||| 0|eng d
020 |a 9783036582825 
020 |a 9783036582832 
020 |a books978-3-0365-8283-2 
024 7 |a 10.3390/books978-3-0365-8283-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TQ  |2 bicssc 
720 1 |a Westphal, Hildegard  |4 edt 
720 1 |a Doo, Steve  |4 edt 
720 1 |a Doo, Steve  |4 oth 
720 1 |a Ries, Justin  |4 edt 
720 1 |a Ries, Justin  |4 oth 
720 1 |a Westphal, Hildegard  |4 oth 
245 0 0 |a The Effect of Ocean Acidification on Skeletal Structures 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (156 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a The increasing partial pressure of atmospheric CO2 (pCO2) is reducing surface ocean pH, a process known as ocean acidification (OA) This results in a reduced saturation of the seawater with respect to the CaCO3 polymorphs aragonite, high-Mg calcite, and low-Mg calcite that are involved in the biological formation of calcareous skeletons and shells. The effect of OA on calcium carbonate precipitation and the subsequent dissolution in carbonate depositional systems, such as coral reefs, is a hotly debated topic. While early studies suggested that certain carbonate-secreting organism groups may be strongly affected by OA or may even become extinct, others observed highly variable, species-specific responses to OA, whereby some taxa are negatively affected, some are positively affected, and others are unaffected. The collection of articles presented in this Special Issue presents ongoing research into the effects of OA on calcareous biomineralization while introducing some new questions and provocative hypotheses. The continued investigation of these concepts should advance our understanding of the mechanisms of biocalcification and improve predictions of how future CO2-induced changes in marine and freshwater systems will impact calcifying organisms, as well as the ecosystems they comprise, in the decades and centuries ahead. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Environmental science, engineering and technology  |2 bicssc 
650 7 |a History of engineering and technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a Archaean 
653 |a artificial intelligence 
653 |a B/Ca 
653 |a biomineralization 
653 |a bleaching 
653 |a boron isotopes 
653 |a calcareous algae 
653 |a calcification 
653 |a calcifying fluid 
653 |a carbon dioxide 
653 |a carbon isotopes 
653 |a Caribbean 
653 |a coccolithophores 
653 |a coral 
653 |a coral recruits 
653 |a coral reefs 
653 |a cyanobacteria 
653 |a echinoderm 
653 |a freshwater acidification 
653 |a freshwater calcifier 
653 |a global warming 
653 |a Lake Tahoe 
653 |a microelectrode 
653 |a mineralogy 
653 |a Mytilus edulis 
653 |a Mytilus trossulus 
653 |a n/a 
653 |a nutrient limitation 
653 |a ocean acidification 
653 |a ocean warming 
653 |a PCE-CT 
653 |a pH regulation 
653 |a phosphate 
653 |a photosynthesis 
653 |a predator-prey interactions 
653 |a Proterozoic 
653 |a scleractinian coral 
653 |a skeletal structure 
653 |a skeleton 
653 |a starfish 
653 |a symbiont 
653 |a synchrotron phase contrast-enhanced microCT 
653 |a zooxanthellate photosymbiont 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/112526  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7652  |7 0  |z Open Access: DOAB, download the publication