Medical Data Processing and Analysis

Medical data can be defined as obtaining information from patients (such as signals, images, sounds, chemical components and their concentration, body temperature, respiratory rate, blood pressure, and different treatment measurements) to quantify the patient's status and disease stage. Compute...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
CNN
ECG
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05053namaa2201117uu 4500
001 doab112437
003 oapen
005 20230808
006 m o d
007 cr|mn|---annan
008 230808s2023 xx |||||o ||| 0|eng d
020 |a 9783036580685 
020 |a 9783036580692 
020 |a books978-3-0365-8069-2 
024 7 |a 10.3390/books978-3-0365-8069-2  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TQ  |2 bicssc 
720 1 |a Mustafa, Wan Azani  |4 edt 
720 1 |a Alquran, Hiam  |4 edt 
720 1 |a Alquran, Hiam  |4 oth 
720 1 |a Mustafa, Wan Azani  |4 oth 
245 0 0 |a Medical Data Processing and Analysis 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (254 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Medical data can be defined as obtaining information from patients (such as signals, images, sounds, chemical components and their concentration, body temperature, respiratory rate, blood pressure, and different treatment measurements) to quantify the patient's status and disease stage. Computer-aided diagnostic (CAD) systems use classical image processing, computer vision, machine learning, and deep learning methods for image analysis. Using image classification or segmentation algorithms, they find a region of interest (ROI) pointing to a specific location within the given image or an outcome of interest in the form of a label pointing to a diagnosis or prognosis. Computer science, with the evolution of artificial intelligence and machine learning techniques, facilitates the modeling and interpretation of results-from carrying out measurements to experiments and observations. Employing technological tools for collection, processing, and analysis incorporates understanding the patient's status and developing the treatment plan. Achieving highly accurate models requires a huge dataset. This issue can be solved by having enough knowledge around medical data processing and their analysis. This reprint shows state-of-the-art research in the field of medical data processing and analysis. The medical data are represented in signals, images, raw data, protein sequences, etc. Processing and analysis of any kind can indicate specific issues in the medical sector such as diagnosis, detection, prediction, and segmentation to enhance the visualization of the processed data 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Environmental science, engineering and technology  |2 bicssc 
650 7 |a History of engineering and technology  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a accuracy and efficiency 
653 |a anomaly detection 
653 |a atrial fibrillation 
653 |a atrophic gastritis 
653 |a bioinformatics 
653 |a blood glucose prediction 
653 |a breast cancer 
653 |a Canonical Correlation Analysis 
653 |a classification 
653 |a CNN 
653 |a convolution neural network 
653 |a COVID-19 pandemic 
653 |a decision support system 
653 |a deep learning 
653 |a diabetes mellitus 
653 |a ECG 
653 |a EEG signals classification 
653 |a ensemble learning 
653 |a feature fusion 
653 |a forecasting 
653 |a generalized additive model 
653 |a H. pylori 
653 |a Hamlet Pattern 
653 |a heart disease 
653 |a heart failure 
653 |a heart rhythm 
653 |a histopathological image 
653 |a hybrid models 
653 |a iris-spectrogram 
653 |a Isolation Forest 
653 |a leukemia 
653 |a long short-term memory 
653 |a machine learning 
653 |a medical imaging 
653 |a mortality 
653 |a motor imagery 
653 |a n/a 
653 |a nature-inspired feature selection 
653 |a perfect matrix of Lagrange differences 
653 |a PIMA dataset 
653 |a protein sequence classification 
653 |a public health 
653 |a Recurrent Neural Networks 
653 |a ReliefF 
653 |a ResNet101 
653 |a review 
653 |a risk prediction 
653 |a SARS-CoV-2 
653 |a scalogram 
653 |a ShuffleNet 
653 |a statistical indicator 
653 |a time-varying covariates 
653 |a Type-2 diabetes 
653 |a weight optimization 
653 |a white blood cell 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/112437  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7550  |7 0  |z Open Access: DOAB, download the publication