Swarms and Network Intelligence

This reprint covers a wide range of topics related to collective intelligence, exploring the interplay between swarm intelligence, network intelligence, and other emerging technologies. The first set of chapters focuses on the behavior and mechanisms of swarming. One chapter describes a locust-inspi...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 04761namaa2201117uu 4500
001 doab101382
003 oapen
005 20230714
006 m o d
007 cr|mn|---annan
008 230714s2023 xx |||||o ||| 0|eng d
020 |a 9783036579207 
020 |a 9783036579214 
020 |a books978-3-0365-7921-4 
024 7 |a 10.3390/books978-3-0365-7921-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
720 1 |a Altshuler, Yaniv  |4 edt 
720 1 |a Altshuler, Yaniv  |4 oth 
720 1 |a David, Eli  |4 edt 
720 1 |a David, Eli  |4 oth 
720 1 |a Pereira, Francisco Camara  |4 edt 
720 1 |a Pereira, Francisco Camara  |4 oth 
245 0 0 |a Swarms and Network Intelligence 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (234 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a This reprint covers a wide range of topics related to collective intelligence, exploring the interplay between swarm intelligence, network intelligence, and other emerging technologies. The first set of chapters focuses on the behavior and mechanisms of swarming. One chapter describes a locust-inspired model of collective marching on rings, while another demonstrates the experimental validation of entropy-driven swarm exploration under sparsity constraints using sparse Bayesian learning. These studies provide new insights into the principles of swarming and its potential applications in fields such as robotics and mobile crowdsensing. The next set of chapters discusses the integration of swarm intelligence with other emerging technologies such as deep learning and graph theory. These studies show how swarm intelligence can be combined with other advanced technologies to solve complex problems and improve decision-making processes. The reprint also covers the topic of network intelligence, including the study of social network analysis, Twitter user activity, and crowd-sourced financial predictions. These studies provide insights into how network intelligence can be harnessed to understand social dynamics and improve decision-making processes in various domains. The reprint concludes with a chapter that proposes a generative design approach for the efficient mathematical modeling of complex systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
650 7 |a Information technology industries  |2 bicssc 
653 |a adversarial AI 
653 |a artificial intelligence 
653 |a automated learning 
653 |a Bayesian models 
653 |a cloud 
653 |a co-design 
653 |a collective intelligence 
653 |a communication 
653 |a consensus 
653 |a crowd dynamics 
653 |a crowd-sourcing 
653 |a crowdsourcing 
653 |a cybersecurity 
653 |a D-optimal design 
653 |a data analysis 
653 |a deep learning 
653 |a deep reinforcement learning 
653 |a defense evasion 
653 |a distributed estimation 
653 |a Docker Swarm 
653 |a e-participation 
653 |a entropy 
653 |a evolutionary learning 
653 |a exploration 
653 |a generative design 
653 |a genetic programming 
653 |a graph network 
653 |a human behavior 
653 |a information theory 
653 |a leader election 
653 |a literature review 
653 |a locusts 
653 |a maximum-entropy learning 
653 |a mobile crowdsensing 
653 |a mobile robotics 
653 |a models 
653 |a multi-agent 
653 |a multi-agent systems 
653 |a n/a 
653 |a natural algorithms 
653 |a neural networks 
653 |a partial observability 
653 |a policymaking 
653 |a privilege escalation 
653 |a public policy 
653 |a risk 
653 |a social learning 
653 |a social media 
653 |a socioeconomic status 
653 |a Sparse Bayesian Learning 
653 |a swarm 
653 |a swarm intelligence 
653 |a swarms 
653 |a UAV control 
653 |a wisdom of the crowd 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/101382  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7478  |7 0  |z Open Access: DOAB, download the publication