Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices

Recently, aluminium scandium nitride (AlScN) emerged as a material with superior properties compared to aluminium nitride (AlN). Substituting Al with Sc in AlN leads to a dramatic increase in the piezoelectric coefficient as well as in electromechanical coupling. This discovery finally allowed us to...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
AlN
n/a
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05117namaa2201117uu 4500
001 doab101366
003 oapen
005 20230714
006 m o d
007 cr|mn|---annan
008 230714s2023 xx |||||o ||| 0|eng d
020 |a 9783036563664 
020 |a 9783036563671 
020 |a books978-3-0365-6366-4 
024 7 |a 10.3390/books978-3-0365-6366-4  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PH  |2 bicssc 
720 1 |a Žukauskaitė, Agnė  |4 edt 
720 1 |a Žukauskaitė, Agnė  |4 oth 
245 0 0 |a Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (186 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a Recently, aluminium scandium nitride (AlScN) emerged as a material with superior properties compared to aluminium nitride (AlN). Substituting Al with Sc in AlN leads to a dramatic increase in the piezoelectric coefficient as well as in electromechanical coupling. This discovery finally allowed us to overcome the limitations of AlN thin films in various piezoelectric applications while still enabling us to benefit from all of the advantages of the parent material system, such as a high temperature stability, CMOS compatibility, and good mechanical properties. Potential applications include RF filters (bulk acoustic wave (BAW) or surface acoustic wave (SAW) resonators), energy harvesting, sensing applications, and infra-red detectors. The recent progress in MOCVD- and MBE-grown AlScN has led to high-frequency and -power electronics, (high-electron-mobility transistors (HEMTs)). AlScN is the first wurtzite III-nitride where ferroelectric switching was observed, allowing for many new possible applications in semiconductor memories additionally, it enables the additional functionality of switching to applications where piezoelectric materials are already in use. This Special Issue was very successful in covering all of the main aspects of AlScN research, including its growth, the fundamental and application-relevant properties, and device fabrication and characterization. We can see that AlScN technology is mature enough to be utilized in wafer-level material development and complicated devices, but there is still much to discover in terms of deposition process control, anisotropy, and, in particular, ferroelectric behavior. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Physics  |2 bicssc 
650 7 |a Research & information: general  |2 bicssc 
653 |a 5G technology 
653 |a alloy scattering 
653 |a AlN 
653 |a AlScN 
653 |a aluminium scandium nitride 
653 |a aluminum nitride 
653 |a aluminum nitride (AlN) 
653 |a aluminum scandium nitride 
653 |a aluminum scandium nitride (AlScN) 
653 |a cantilever beams 
653 |a coercive field 
653 |a complementary switchable 
653 |a diamond thin film 
653 |a elastic properties 
653 |a electromechanical coupling coefficient k2 
653 |a fabrication 
653 |a fatigue 
653 |a ferroelectric 
653 |a ferroelectrics 
653 |a film 
653 |a high temperature 
653 |a Lamb-wave resonators 
653 |a laser ultrasound 
653 |a leakage current 
653 |a magnetron sputter epitaxy 
653 |a MEMS 
653 |a micromirror 
653 |a microscanner 
653 |a n/a 
653 |a non-metallic substrates 
653 |a nonvolatile memory 
653 |a physical vapor deposition 
653 |a piezoelectric 
653 |a piezoelectric films 
653 |a piezoelectric thin films 
653 |a piezoelectricity 
653 |a potassium hydroxide (KOH) 
653 |a PUND test 
653 |a Q-factor 
653 |a Raman spectroscopy 
653 |a residual stress 
653 |a retention 
653 |a SAW devices 
653 |a ScAlN thin film 
653 |a scandium-aluminum nitride 
653 |a scandium-doped aluminum nitride 
653 |a sputter deposition 
653 |a stress 
653 |a stress gradient 
653 |a structure analysis 
653 |a substrate-RF 
653 |a surface acoustic waves 
653 |a temperature coefficient 
653 |a thermal stability 
653 |a thin film 
653 |a thin films 
653 |a wet etch 
653 |a wurtzite 
653 |a X-ray diffraction 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/101366  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7461  |7 0  |z Open Access: DOAB, download the publication