Advances in Image Enhancement

In the era of the Internet of Things, images have played important roles in human-computer interactions, and with the arrival of big data technology, people have higher requirements regarding image quality, especially for images collected in dark light. This can be addressed through the development...

Full description

Bibliographic Details
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
CNN
GAN
HOG
Online Access:Open Access: DOAB: description of the publication
Open Access: DOAB, download the publication
LEADER 05168namaa2201369uu 4500
001 doab101350
003 oapen
005 20230714
006 m o d
007 cr|mn|---annan
008 230714s2023 xx |||||o ||| 0|eng d
020 |a 9783036579405 
020 |a 9783036579412 
020 |a books978-3-0365-7940-5 
024 7 |a 10.3390/books978-3-0365-7940-5  |2 doi 
040 |a oapen  |c oapen 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
720 1 |a Tian, Chunwei  |4 edt 
720 1 |a Liang, Yudong  |4 edt 
720 1 |a Liang, Yudong  |4 oth 
720 1 |a Ren, Wenqi  |4 edt 
720 1 |a Ren, Wenqi  |4 oth 
720 1 |a Tian, Chunwei  |4 oth 
245 0 0 |a Advances in Image Enhancement 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 online resource (330 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 |a In the era of the Internet of Things, images have played important roles in human-computer interactions, and with the arrival of big data technology, people have higher requirements regarding image quality, especially for images collected in dark light. This can be addressed through the development of camera hardware quality, i.e., the resolution and exposure time of cameras, which may require high computational costs. As an alternative, image enhancement techniques can exact salient features to improve the quality of captured images according to the differences in diverse features, although they suffer from some challenges, i.e., a low contrast, artifacts, and overexposure, thus making it decidedly necessary to determine how to use advanced image enhancement techniques. The topic of advances in the image enhancement of electronics is presented in this reprint, which brings together the research accomplishments of researchers from academia and industry. The secondary goal of this reprint is to display the latest research results of advances in image enhancement. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Computer science  |2 bicssc 
650 7 |a Information technology industries  |2 bicssc 
653 |a A-star algorithm 
653 |a active contour 
653 |a adaptive adjustment 
653 |a artificial potential field method 
653 |a attention mechanism 
653 |a autoencoder 
653 |a binocular ranging 
653 |a blind watermark removal 
653 |a blockchain technology 
653 |a camera calibration 
653 |a capsule network 
653 |a CNN 
653 |a color moments 
653 |a complex background 
653 |a convolutional neural networks 
653 |a cross stage partial network 
653 |a deep learning 
653 |a DHV recognition 
653 |a dual networks 
653 |a dynamic scene 
653 |a electronic bidding 
653 |a encoder-decoder architecture 
653 |a enhanced CNN 
653 |a feature fusion 
653 |a fine learning block 
653 |a GAN 
653 |a generative adversarial networks 
653 |a Ghost module 
653 |a histogram equalization 
653 |a HOG 
653 |a image denoising 
653 |a image enhancement 
653 |a image fusion 
653 |a image segmentation 
653 |a image stitching 
653 |a image super-resolution 
653 |a K-means clustering 
653 |a layered projection 
653 |a least squares method 
653 |a loss function 
653 |a low illumination 
653 |a map building 
653 |a medical image 
653 |a multi-channel 
653 |a multi-scale network 
653 |a multiple domains 
653 |a NDT registration 
653 |a night image dehazing 
653 |a non-local mean filter 
653 |a object detection 
653 |a optimization algorithm 
653 |a particle swarm optimization 
653 |a path planning 
653 |a power line scene recognition 
653 |a probability update 
653 |a RandLa-Net 
653 |a random sampling 
653 |a ResNet 
653 |a restart strategy 
653 |a Retinex theory 
653 |a SE-block 
653 |a segmentation 
653 |a semantic segmentation 
653 |a serial architecture 
653 |a side-scan sonar 
653 |a spline interpolation 
653 |a stereo correction 
653 |a system design 
653 |a translate images 
653 |a U-net 
653 |a Visual SLAM 
653 |a wavelet scattering 
653 |a wavelet transform 
653 |a YOLOv5 
653 |a YOLOv5s 
653 |a zero-reference 
793 0 |a DOAB Library. 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/101350  |7 0  |z Open Access: DOAB: description of the publication 
856 4 0 |u https://mdpi.com/books/pdfview/book/7445  |7 0  |z Open Access: DOAB, download the publication